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High-Pressure Gas Detectors

e Good for Ov[33 and for dark matter!

e EXxcellent energy resolution (critical for Ov[3[3, can
also lower threshold for dark matter)

e Track imaging for high-fidelity track topology
(enhanced background rejection)

e Small charge to light fluctuations (more precisely
defined signal and background regions)

e Can possibly extract nuclear recoil track
direction (would be a game changer for dark
matter!)
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Energy Resolution
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Fig. 5. Density dependencies of the intrinsic energy resolution (% FWHM) measured for 662 keV gamma-rays.



A Recent Result!

E 50—  From: arXiv:1211.4474 [physics.ins-det]
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A Recent Result!
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Tracking Too!

Real track from 3Cs y-ray — reconstructed with SiPMs
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What'’s the next step?

 Previous results were done with pure Xe (tracking
plane had evaporated TPB)

e Track directionality would make a very strong case
for direct detection of dark matter

e Most current experiments try for directionality by

imaging the nuclear recoll track:

e \ery diffuse detectors
(low target mass)

e High energy threshold

e Poor track image quality
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A Different Approach!

e Use columnar recombination (CR) to extract track direction...
® Requires ionization electrons drift back through parent track:
e Depends on angle between drift field and track direction

e Other recombination types are independent of this angle
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How to Maximize This Effect?

eDefine “Columnarity,” C = i
ro

e Represents the maximal difference in recombination
from track angle

¢|n 0.05 g/cm3 xenon gas:

® R = Nuclear recoil track range = 2.1 um

62

* 1o = Onsager radius ro = —
€ (&

(recombination distance) = 70 nm

e ¢ = electron charge, € = gas dielectric constant,
Ee = electron kinetic energy (usually taken as kT)

e C =30 inthis case (would like C > 10...)



So What Do We Need?

¢ \We have:
e Short tracks (~70 nm)... Don’t lose electrons!
e Small signals... Don’t waste electrons or photons!

¢ | ots of energy deposited form nuclear recoils goes into
primary excitations, but...

e excitations don’t contribute to the CR signal!

e Use the Penning Effect: convert excitons to ions with a
molecular additive so that these can contribute to CR
too!

e Bonus: the same molecule can cool the electrons, thus
increasing the recombination probability



But Wait, There’s More!

* Remember that we are detecting ionization electrons with
electro-luminescence light, therefore...

® Poor photon collection efficiency means poor charge
collection efficiency!!!

¢ \We can achieve nearly 100% coverage if we cover the inside
of the TPC with WLS plastic panels read out with PMTs (or
APD’s, or SIPMs, elc.)

e But most WLS plastic panels are
not very efficient in VUV-300 nm
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But Wait, There’s More!

* Remember that we are detecting ionization electrons with
electro-luminescence light, therefore...

® Poor photon collection efficiency means poor charge
collection efficiency!!!

¢ \We can achieve nearly 100% coverage if we cover the inside
of the TPC with WLS plastic panels read out with PMTs (or
APD’s, or SiPMs, etc.) |

e But most WLS plastic panels are
not very efficient in VUV-300 nm
light is pretty close to optimal
though.

® Must shift 173 nm photons to 300
nm photons in the gas!
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Two Birds With One Stone

¢ To extract the CR signal from a HPXe gas detector, we need
two things:

¢ Penning additive to convert excitations into ionizations
e \WLS that absorbs at 173 nm and fluoresces at = 300 nm

* Provenance! Tri-methyl-amine (TMA) is a Penning gas known
to fluoresce efficiently at 300 nm!

n TMA A =240 nm

TEA ——==A =250 nm
TPA —8—8-A = 248 nm

® a|so possible: Tri-ethyl-amine (TEA)
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What Might This Look Like?




What Might This Look Like?




Shorter Ter R&D

e The “TEA Pot”

¢ Measures basic response
characteristics

e Parallel-plate ionization
chamber with optical
sensing using 4 PMTs
that look at the gap
from the sides

o Will measure both light
and charge as
functions of density,

electric field, and 28
fraction of TMA/TEA I



Shorter Term R&D




Shorter Term R&D
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Conclusions

e This is a really unusual way to get at dark matter
directionality

e Each step is quite plausible, but there are several
unknowns to be addressed:

e Penning efficiency of TMA?

e Fluorescence efficiency of TMA in recombination?
¢ Rate of ionic charge exchange?

e Cooling rate of electrons after ionization?

e |nitial simulations and R&D is underway!



